资源类型

期刊论文 444

会议视频 1

年份

2024 1

2023 31

2022 33

2021 27

2020 30

2019 20

2018 26

2017 32

2016 21

2015 17

2014 18

2013 27

2012 18

2011 21

2010 33

2009 18

2008 28

2007 14

2006 5

2005 5

展开 ︾

关键词

SOFC 2

可持续发展战略 2

多联产 2

热电联产 2

热释放速率 2

12相整流 1

3D打印 1

6016 合金 1

9 %~12 % Cr 钢 1

&prime 1

&gamma 1

Tetrasphaera 1

CO2地下埋存 1

Cu(Inx 1

FGR预测 1

Ga1–x)Se2 1

Inconel 718合金 1

Laves相 1

M23C6 碳化物 1

展开 ︾

检索范围:

排序: 展示方式:

A performance analysis of integrated solid oxide fuel cell and heat recovery steam generator for IGFC

Souman RUDRA, H. T. KIM, Jinwook LEE, L. ROSENDAHL,

《能源前沿(英文)》 2010年 第4卷 第3期   页码 402-413 doi: 10.1007/s11708-010-0122-x

摘要: Solid oxide fuel cell (SOFC) is a promising technology for electricity generation. Sulfur-free syngas from a gas-cleaning unit serves as fuel for SOFC in integrated gasification fuel cell (IGFC) power plants. It converts the chemical energy of fuel gas directly into electric energy, thus high efficiencies can be achieved. The outputs from SOFC can be utilized by heat recovery steam generator (HRSG), which drives the steam turbine for electricity production. The SOFC stack model was developed using the process flow sheet simulator Aspen Plus, which is of the equilibrium type. Various ranges of syngas properties gathered from different literature were used for the simulation. The results indicate a trade-off efficiency and power with respect to a variety of SOFC inputs. The HRSG located after SOFC was included in the current simulation study with various operating parameters. This paper describes IGFC power plants, particularly the optimization of HRSG to improve the efficiency of the heat recovery from the SOFC exhaust gas and to maximize the power production in the steam cycle in the IGFC system. HRSG output from different pressure levels varies depending on the SOFC output. The steam turbine efficiency was calculated for measuring the total power plant output. The aim of this paper is to provide a simulation model for the optimal selection of the operative parameters of HRSG and SOFC for the IGFC system by comparing it with other models. The simulation model should be flexible enough for use in future development and capable of predicting system performance under various operating conditions.

关键词: SOFC     HRSG     IGFC     syngas    

Typical off-design analytical performances of internal combustion engine cogeneration

Xiaohong HE, Ruixian CAI

《能源前沿(英文)》 2009年 第3卷 第2期   页码 184-192 doi: 10.1007/s11708-009-0007-z

摘要: Based on experimental data, typical off-design characteristic curves with corresponding formulas of internal combustion engine (ICE) are summarized and investigated. In combination with analytical solution of single-pressure heat recovery steam generator (HRSG) and influence of ambient pressure on combined heat and power (CHP) system, off-design operation regularities of ICE cogeneration are analyzed. The approach temperature difference Δ , relative steam production and superheated steam temperature decrease with the decrease in engine load. The total energy efficiency, equivalent exergy efficiency and economic exergy efficiency first increase and then decrease. Therefore, there exists an optimum value, corresponding to ICE best efficiency operating condition. It is worth emphasizing that Δ is likely to be negative in low load condition with high design steam parameter and low ICE design exhaust gas temperature. Compared with single shaft gas turbine cogeneration, Δ in ICE cogeneration is more likely to be negative. The main reason for this is that the gas turbine has an increased exhaust gas flow with the decrease in load; while ICE is on the contrary. Moreover, ICE power output and efficiency decrease with the decrease in ambient pressure. Hence, approach temperature difference, relative steam production and superheated steam temperature decrease rapidly while the cogeneration efficiencies decrease slightly. It is necessary to consider the influence of ambient conditions, especially the optimization of ICE performances at different places, on cogeneration performances.

关键词: internal combustion engine (ICE)     cogeneration     heat recovery steam generator (HRSG)     off-design     superheated steam     saturated steam     ambient pressure    

High-efficiency inspecting method for mobile robots based on task planning for heat transfer tubes ina steam generator

《机械工程前沿(英文)》 2023年 第18卷 第2期 doi: 10.1007/s11465-022-0741-z

摘要: Many heat transfer tubes are distributed on the tube plates of a steam generator that requires periodic inspection by robots. Existing inspection robots are usually involved in issues: Robots with manipulators need complicated installation due to their fixed base; tube mobile robots suffer from low running efficiency because of their structural restricts. Since there are thousands of tubes to be checked, task planning is essential to guarantee the precise, orderly, and efficient inspection process. Most in-service robots check the task tubes using row-by-row and column-by-column planning. This leads to unnecessary inspections, resulting in a long shutdown and affecting the regular operation of a nuclear power plant. Therefore, this paper introduces the structure and control system of a dexterous robot and proposes a task planning method. This method proceeds into three steps: task allocation, base position search, and sequence planning. To allocate the task regions, this method calculates the tool work matrix and proposes a criterion to evaluate a sub-region. And then all tasks contained in the sub-region are considered globally to search the base positions. Lastly, we apply an improved ant colony algorithm for base sequence planning and determine the inspection orders according to the planned path. We validated the optimized algorithm by conducting task planning experiments using our robot on a tube sheet. The results show that the proposed method can accomplish full task coverage with few repetitive or redundant inspections and it increases the efficiency by 33.31% compared to the traditional planning algorithms.

关键词: steam generator transfer tubes     mobile robot     dexterous structure     task planning     efficient inspection    

Modeling analysis on solar steam generator employed in multi-effect distillation (MED) system

Zhaorui ZHAO, Bao YANG, Ziwen XING

《能源前沿(英文)》 2019年 第13卷 第1期   页码 193-203 doi: 10.1007/s11708-019-0608-0

摘要: Recently the porous bilayer wood solar collectors have drawn increasing attention because of their potential application in solar desalination. In this paper, a thermodynamic model has been developed to analyze the performance of the wood solar collector. A modeling analysis has also been conducted to assess the performance and operating conditions of the multiple effect desalination (MED) system integrated with the porous wood solar collector. Specifically, the effects of operating parameters, such as the motive steam temperature, seawater flow rate, input solar energy and number of effects on the energy consumption for each ton of distilled water produced have been investigated in the MED desalination system combined with the bilayer wood solar steam generator. It is found that, under a given operating condition, there exists an optimum steam generation temperature of around 145°C in the wood solar collector, so that the specific power consumption in the MED system reaches a minimum value of 24.88 kWh/t. The average temperature difference is significantly affected by the solar heating capacity. With the solar capacity increasing from 50 kW to 230 kW, the average temperature difference increases from 1.88°C to 6.27°C. This parametric simulation study will help the design of efficient bilayer wood solar steam generator as well as the MED desalination system.

关键词: solar energy     steam generating     multi-effect desalination    

Exergy-energy analysis of full repowering of a steam power plant

S. NIKBAKHT NASERABAD,K. MOBINI,A. MEHRPANAHI,M. R. ALIGOODARZ

《能源前沿(英文)》 2015年 第9卷 第1期   页码 54-67 doi: 10.1007/s11708-014-0342-6

摘要: A 320 MW old steam power plant has been chosen for repowering in this paper. Considering the technical conditions and working life of the power plant, the full repowering method has been selected from different repowering methods. The power plant repowering has been analyzed for three different feed water flow rates: a flow rate equal to the flow rate at the condenser exit in the original plant when it works at nominal load, a flow rate at maximum load, and a flow rate when all the extractions are blocked. For each flow rates, two types of gas turbines have been examined: V94.2 and V94.3A. The effect of a duct burner has then been investigated in each of the above six cases. Steam is produced by a double-pressure heat recovery steam generator (HRSG) with reheat which obtains its required heat from the exhaust gases coming from the gas turbines. The results obtained from modeling and analyzing the energy-exergy of the original steam power plant and the repowered power plant indicate that the maximum efficiency of the repowered power plant is 52.04%. This maximum efficiency occurs when utilizing two V94.3A gas turbines without duct burner in the steam flow rate of the nominal load.

关键词: full repowering     exergy analysis     V94.2 and V94.3A gas turbines     double-pressure HRSG     duct burner     Bandarabbas steam power plant     efficiency    

Performance evaluation of an improved biomass-fired cogeneration system simultaneously using extraction steam

《能源前沿(英文)》 2022年 第16卷 第2期   页码 321-335 doi: 10.1007/s11708-021-0741-4

摘要: An advanced cogeneration system based on biomass direct combustion was developed and its feasibility was demonstrated. In place of the traditional single heat source (extraction steam), the extraction steam from the turbine, the cooling water from the plant condenser, and the low-pressure feedwater from the feedwater preheating system were collectively used for producing district heat in the new scheme. Hence, a remarkable energy-saving effect could be achieved, improving the overall efficiency of the cogeneration system. The thermodynamic and economic performance of the novel system was examined when taking a 35 MW biomass-fired cogeneration unit for case study. Once the biomass feed rate and net thermal production remain constant, an increment of 1.36 MW can be expected in the net electric production, because of the recommended upgrading. Consequently, the total system efficiency and effective electrical efficiency augmented by 1.23 and 1.50 percentage points. The inherent mechanism of performance enhancement was investigated from the energy and exergy aspects. The economic study indicates that the dynamic payback period of the retrofitting project is merely 1.20 years, with a net present value of 5796.0 k$. In conclusion, the proposed concept is validated to be advantageous and profitable.

关键词: biomass-fired cogeneration     district heat production system     absorption heat pump     extraction steam     cooling water     low-pressure feedwater    

Effect of heat transfer coefficient of steam turbine rotor on thermal stress field under off-design condition

Jie GUO,Danmei XIE,Hengliang ZHANG,Wei JIANG,Yan ZHOU

《能源前沿(英文)》 2016年 第10卷 第1期   页码 57-64 doi: 10.1007/s11708-015-0385-3

摘要: The precise calculation of temperature and thermal stress field of steam turbine rotor under off-design conditions is of paramount significance for safe and economic operation, in which an accurate calculation of heat transfer (HT) coefficient plays a decisive role. HT coefficient changes dramatically along with working conditions. First, a finite element analysis of rotor model, applied with ordinary rotor materials, has been conducted to investigate the temperature and thermal stress difference along with the change of HT coefficient from 20 W/(m ·°C) to 20000 W/(m ·°C). Next, the differentiation between existing empirical formulas has been analyzed from the aspect of physical significance of non-dimension parameters. Finally, a verifying case of the cold startup of a 1000MW unit has been proceeded. The result shows that the accuracy of coefficient calculation when steam parameters are low has a greater influence on that of rotor temperature and thermal stress, which means a precise empirical HT coefficient formula, like the Sarkar formula is strongly recommended. When steam parameters are high and HT coefficient is larger than 10 W/(m ·°C), there will be barely any influence on the calculation of thermal stress. This research plays a constructive role in the calculation and analysis of thermal stress.

关键词: steam turbine     rotor     thermal stress     heat transfer coefficient     empirical formula    

A space power system of free piston Stirling generator based on potassium heat pipe

Mingqiang LIN, Jian MOU, Chunyun CHI, Guotong HONG, Panhe GE, Gu HU

《能源前沿(英文)》 2020年 第14卷 第1期   页码 1-10 doi: 10.1007/s11708-019-0655-6

摘要: The power system of a free piston Stirling generator (FPSG) based on potassium heat pipes has been developed in this paper. Thanks to the advantages of long life, high reliability, and high overall thermal efficiency, the FPSG is a promising candidate for nuclear energy, especially in space exploration. In this paper, the recent progress of FPSG based on nuclear reactor for space use was briefly reviewed. A novel FPSG weighted only 4.2 kg was designed, and one dimensional thermodynamic modeling of the FPSG using Sage software was performed to estimate its performance. The experiment results indicated that this FPSG could provide 142.4 W at a thermal-to-electric efficiency of nearly 17.4%. Besides, the power system integrated with four FPSGs and potassium heat pipes was performed and the single machine failure test was conducted. The results show that this system could provide an electrical power of 300 W at an overall thermal efficiency of 7.3%. Thus, it is concluded that this power system is feasible and will have a great prospect for future applications.

关键词: free piston Stirling generator (FPSG)     potassium heat pipe     power system     energy conversion    

Heat transfer coefficient of wheel rim of large capacity steam turbines

SHI Jinyuan, DENG Zhicheng, YANG Yu, JUN Ganwen

《能源前沿(英文)》 2008年 第2卷 第1期   页码 20-24 doi: 10.1007/s11708-008-0015-4

摘要: A way of calculating the overall equivalent heat transfer coefficient of wheel rims of large capacity steam turbines is presented. The method and formula to calculate the mean forced convection heat-transfer coefficient of the surface of the blade and for the bottom wall of the blade passage, are introduced. The heat transmission from the blade to the rim was simplified by analogy to heat transmission in the fins. A fin heat transfer model was then used to calculate the equivalent heat transfer coefficient of the blade passage. The overall equivalent heat transfer coefficient of the wheel rim was then calculated using a cylindrical surface model. A practical calculation example was presented. The proposed method helps determine the heat transfer boundary conditions in finite element analyses of temperature and thermal stress fields of steam turbine rotors.

关键词: convection heat-transfer     capacity     heat-transfer coefficient     bottom     transmission    

Recovery of waste heat in cement plants for the capture of CO

Ruifeng DONG, Zaoxiao ZHANG, Hongfang LU, Yunsong YU

《化学科学与工程前沿(英文)》 2012年 第6卷 第1期   页码 104-111 doi: 10.1007/s11705-011-1166-0

摘要: Large amounts of energy are consumed during the manufacturing of cement especially during the calcination process which also emits large amounts of CO . A large part of the energy used in the making of cement is released as waste heat. A process to capture CO by integrating the recovery and utilization of waste heat has been designed. Aspen Plus software was used to calculate the amount of waste heat and the efficiency of energy utilization. The data used in this study was based on a dry process cement plant with a 5-stage preheater and a precalciner with a cement output of 1 Mt/y. According to the calculations: 1) the generating capacity of the waste heat recovery system is 4.9 MW. 2) The overall CO removal rate was as high as 78.5%. 3) The efficiency of energy utilization increased after the cement producing process was retrofitted with this integrated design.

关键词: cement industry     waste heat     recovery     utilization     CO2 removal    

锈蚀样件在动态钠回路中的实验研究

刘泽军,孙树海

《中国工程科学》 2012年 第14卷 第11期   页码 99-102

摘要:

中国实验快堆的蒸汽发生器在安装过程中发现其中一个蒸发器和一个过热器壳程内存在较为严重的锈蚀现象。为此中国原子能研究院快堆工程部钠工艺研究室进行了钠中静态浸泡实验,但是静态除锈温度要求较高,快堆现场在运行前不易达到该要求。为了进一步研究蒸汽发生器锈蚀表面在动态钠中的行为,为现场进行蒸汽发生器的清洗提供依据,快堆工程部决定进行蒸汽发生器锈蚀样件动态清洗实验。本实验利用“PEC堆电磁泵特性实验钠回路”,模拟蒸汽发生器的运行工况,前后对比样件的照片,得出不同条件下的清洗效果,为中国实验快堆蒸汽发生器现场在线清洗提供依据。

关键词: 蒸汽发生器     样件     锈蚀     动态清洗    

Automated retrofit targeting of heat exchanger networks

Timothy G. Walmsley, Nathan S. Lal, Petar S. Varbanov, Jiří J. Klemeš

《化学科学与工程前沿(英文)》 2018年 第12卷 第4期   页码 630-642 doi: 10.1007/s11705-018-1747-2

摘要:

The aim of this paper is to develop a novel heat exchanger network (HEN) retrofit method based on a new automated retrofit targeting (ART) algorithm. ART uses the heat surplus-deficit table (HSDT) in combination with the Bridge Retrofit concepts to generate retrofit bridges option, from which a retrofit design may be formulated. The HSDT is a tabular tool that shows potential for improved re-integration of heat source and sink streams within a HEN. Using the HSDT, retrofit bridges—a set of modifications that links a cooler to a heater to save energy—may be identified, quantified, and compared. The novel retrofit method including the ART algorithm has been successfully implemented in Microsoft ExcelTM to enable analysis of large-scale HENs. A refinery case study with 27 streams and 46 existing heat exchangers demonstrated the retrofit method’s potential. For the case study, the ART algorithm found 68903 feasible unique retrofit opportunities with a minimum 400 kW·unit−1 threshold for heat recovery divided by the number of new units. The most promising retrofit project required 3 new heat exchanger units to achieve a heat savings of 4.24 MW with a favorable annualised profit and a reasonable payback period.

关键词: process retrofit     pinch analysis     heat exchanger network     heat recovery    

Transversal tube pitch effects on local heat transfer characteristics of the flat tube bank fin mounted

Liangbi WANG, Zhimin LIN, Kangjie SUN, Yuanxin DONG, Song LIU, Yongheng ZHANG,

《能源前沿(英文)》 2010年 第4卷 第3期   页码 333-345 doi: 10.1007/s11708-009-0061-6

摘要: The tube bank fin is commonly used to increase the area of the heat transfer surface with a small heat transfer coefficient of a heat exchanger. If vortex generators (VGs) are punched on the fin surface, the heat transfer performance of the fin can be improved. This paper focused on the effect of transversal tube pitch on the local heat transfer performance of the three-row flat tube bank fin mounted with VGs. On the fin surface, constructing the flow channel but without mounted VGs, the transversal tube pitch was greater, and the span averaged Nusselt number downstream was larger because fewer interactions of vortices would be generated from different VGs located upstream. When the area goodness factor was used as the criteria on the condition of one tube unit of heat exchanger for commonly used fin materials and fin thickness, the transversal tube pitch has considerable effect on the heat transfer enhancement of VGs. Large transversal tube pitch is more sensitive to fin material than to fin thickness.

关键词: heat transfer enhancement     vortex generator     finned flat tube bank     heat exchanger    

Exergy analysis of R1234ze(Z) as high temperature heat pump working fluid with multi-stage compression

Bin HU, Di WU, L.W. WANG, R.Z. WANG

《能源前沿(英文)》 2017年 第11卷 第4期   页码 493-502 doi: 10.1007/s11708-017-0510-6

摘要: In this paper, the simulation approach and exergy analysis of multi-stage compression high temperature heat pump (HTHP) systems with R1234ze(Z) working fluid are conducted. Both the single-stage and multi-stage compression cycles are analyzed to compare the system performance with 120°C pressurized hot water supply based upon waste heat recovery. The exergy destruction ratios of each component for different stage compression systems are compared. The results show that the exergy loss ratios of the compressor are bigger than that of the evaporator and the condenser for the single-stage compression system. The multi-stage compression system has better energy and exergy efficiencies with the increase of compression stage number. Compared with the single-stage compression system, the coefficient of performance (COP) improvements of the two-stage and three-stage compression system are 9.1% and 14.6%, respectively. When the waste heat source temperature is 60°C, the exergy efficiencies increase about 6.9% and 11.8% for the two-stage and three-stage compression system respectively.

关键词: multi-stage compression     high temperature heat pump     heat recovery     exergy destruction     R1234ze(Z) working fluid    

Evaluation of the power-generation capacity of wearable thermoelectric power generator

Yang YANG, Jing LIU,

《能源前沿(英文)》 2010年 第4卷 第3期   页码 346-357 doi: 10.1007/s11708-010-0112-z

摘要: Employing thermoelectric generators (TEGs) to gather heat dissipating from the human body through the skin surface is a promising way to supply electronic power to wearable and pocket electronics. The uniqueness of this method lies in its direct utilization of the temperature difference between the environment and the human body, and complete elimination of power maintenance problems. However, most of the previous investigations on thermal energy harvesters are confined to the TEG and electronic system themselves because of the low quality of human energy. We evaluate the energy generation capacity of a wearable TEG subject to various conditions based on biological heat transfer theory. Through numerical simulation and corresponding parametric studies, we find that the temperature distribution in the thermopiles affects the criterion of the voltage output, suggesting that the temperature difference in a single point can be adopted as the criterion for uniform temperature distribution. However, the criterion has to be shifted to the sum of temperature difference on each thermocouple when the temperature distribution is inconsistent. In addition, the performance of the thermal energy harvester can be easily influenced by environmental conditions, as well as the physiological state and physical characteristics of the human body. To further validate the calculation results for the wearable TEG, a series of conceptual experiments are performed on a number of typical cases. The numerical simulation provides a good overview of the electricity generation capability of the TEG, which may prove useful in the design of future thermal energy harvesters.

关键词: thermal energy harvester     thermoelectric generator     biological heat transfer     power generating capacity    

标题 作者 时间 类型 操作

A performance analysis of integrated solid oxide fuel cell and heat recovery steam generator for IGFC

Souman RUDRA, H. T. KIM, Jinwook LEE, L. ROSENDAHL,

期刊论文

Typical off-design analytical performances of internal combustion engine cogeneration

Xiaohong HE, Ruixian CAI

期刊论文

High-efficiency inspecting method for mobile robots based on task planning for heat transfer tubes ina steam generator

期刊论文

Modeling analysis on solar steam generator employed in multi-effect distillation (MED) system

Zhaorui ZHAO, Bao YANG, Ziwen XING

期刊论文

Exergy-energy analysis of full repowering of a steam power plant

S. NIKBAKHT NASERABAD,K. MOBINI,A. MEHRPANAHI,M. R. ALIGOODARZ

期刊论文

Performance evaluation of an improved biomass-fired cogeneration system simultaneously using extraction steam

期刊论文

Effect of heat transfer coefficient of steam turbine rotor on thermal stress field under off-design condition

Jie GUO,Danmei XIE,Hengliang ZHANG,Wei JIANG,Yan ZHOU

期刊论文

A space power system of free piston Stirling generator based on potassium heat pipe

Mingqiang LIN, Jian MOU, Chunyun CHI, Guotong HONG, Panhe GE, Gu HU

期刊论文

Heat transfer coefficient of wheel rim of large capacity steam turbines

SHI Jinyuan, DENG Zhicheng, YANG Yu, JUN Ganwen

期刊论文

Recovery of waste heat in cement plants for the capture of CO

Ruifeng DONG, Zaoxiao ZHANG, Hongfang LU, Yunsong YU

期刊论文

锈蚀样件在动态钠回路中的实验研究

刘泽军,孙树海

期刊论文

Automated retrofit targeting of heat exchanger networks

Timothy G. Walmsley, Nathan S. Lal, Petar S. Varbanov, Jiří J. Klemeš

期刊论文

Transversal tube pitch effects on local heat transfer characteristics of the flat tube bank fin mounted

Liangbi WANG, Zhimin LIN, Kangjie SUN, Yuanxin DONG, Song LIU, Yongheng ZHANG,

期刊论文

Exergy analysis of R1234ze(Z) as high temperature heat pump working fluid with multi-stage compression

Bin HU, Di WU, L.W. WANG, R.Z. WANG

期刊论文

Evaluation of the power-generation capacity of wearable thermoelectric power generator

Yang YANG, Jing LIU,

期刊论文